

CUTTATIP

GIMT - Grooving and Turning Inserts with a New Advanced Chipformer

CUTTR

Highlights

- New GIMT Groove-Turn chipformer for cut-grip pressed insert
- Optimized for 4 applications: Grooving, Partial Grooving, Turning and Finish Turning
- Standard widths $\mathbf{3 , 4 , 5}$ \& 6 mm

Groove-Turn inserts are used in four different applications:

Full Width Grooving

Finish Turning

Partial (finish) Grooving

Turning

Most of the chipformers available in the market perform well in one or two of the above-mentioned four applications, but very rarely in all of them.

Based on ISCAR's accumulated experience and intensive R\&D, a unique GIMT insert with a new chipformer has been designed that excels in all four applications, providing efficient chip control in a wide range of machining conditions. The GIMT inserts were optimized for steel materials but they also function very well on stainless steel and high temperature material groups. The GIMT inserts are available in standard widths of $3,4,5$ and 6 mm .

The new inserts provide a high-performance and cost-effective solution, which can eliminate the use of different insert types for each application, reduce stock requirements, and provide end users with higher flexibility.

Click Link to

 See Short Video
New Product Announcement

CUTTีกำ

Chipbreaker Elements

New Product Announcement

CUTTิATIP

Chip Control Range

GIMT 608

New Product Announcement

CUTGRIP

Application: Grooving
Workpiece Material: SAE 4340
Insert: GIMT 304
Vc: $120 \mathrm{~m} / \mathrm{min}$
fmm/rev
ap mm
0.10

Application: Turning
Workpiece Material: SAE 4340
Insert: GIMT 304
Vc: $120 \mathrm{~m} / \mathrm{min}$

f mm/rev ap mm	0.5	1.0	1.5
0.12			4.
0.22		 	
0.30	 	2	${ }^{6} \cos ^{\frac{1}{1}} 0^{0} 2{ }^{2}$

New Product Announcement

TEST' REPORTS GIMT' 3

	ISCAR	Competitor
Insert	GIMT 304 IC808	3 mm Grooving Insert
Material	Steel 12CrNi4Pb	
Operation	External Grooving	
$\mathrm{Vc}(\mathrm{m} / \mathrm{min})$	180	
f ($\mathrm{mm} / \mathrm{rev}$)	0.12	
D.O.C (mm)	2	
Chips		

TEST REPORTS GIMT 4

	ISCAR	Former
Insert	GIMT 404 IC808	GIMF 406 IC808
Material	Steel 39NiCrMo3	
Operation	External Grooving	
$\mathrm{Vc}(\mathrm{m} / \mathrm{min})$	150	
f ($\mathrm{mm} / \mathrm{rev}$)	0.12	
D.O.C (mm)	15	
Chips		

TEST REPORTS GIMT 6

New Product Announcement

CUTTヘิif

GIMT

Utility Single-Ended Inserts for Grooving and Turning

Designation	Dimensions			Tough \leftrightarrow Hard				Recommended Machining Data		
	CW	RE	BW	$\begin{aligned} & \text { O్X } \\ & \text { OU } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \underline{O} \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \underline{U} \end{aligned}$	$\begin{aligned} & \text { Q} \\ & \text { O } \\ & \hline \end{aligned}$	$\mathrm{a}_{\mathrm{p}}(\mathrm{min})$	f turn ($\mathrm{mm} / \mathrm{rev}$)	f groove ($\mathrm{mm} / \mathrm{rev}$)
GIMT 304	3.00	0.40	2.40	-	\bullet	-	\bullet	0.50-1.80	0.10-0.22	0.07-0.15
ClMT 404	4.00	0.40	3.40	-	-	-	\bullet	0.50-2.40	0.15-0.25	0.09-0.20
CIMT 508	5.00	0.80	4.00	-	-	-	-	1.00-3.00	0.20-0.35	0.11-0.22
CIMT 608	6.00	0.80	5.00	-	-	-	-	1.00-3.60	0.22-0.40	0.13-0.25

- Dmin for internal applications $=70 \mathrm{~mm}$

