

Page $1 / 5$

COMBICHAM
 Expansion of the COMBICHAM
 Large Diameter Drills for the Wind Turbine Industry

Highlights

ISCAR is expanding the COMBICHAM drills family by adding 3 drill diameters:
 33.2, 36.2 , and 39.2 mm in drilling depths of $\mathbf{7}$ and $\mathbf{8 L / D}$ ratio.

The new drills provide an ultimate solution for drilling the most popular hole diameters in wind turbine parts such as blade bearings, tower flanges, yaw rings and planetary ring gears.

Planetary Ring Gear

Ring gears embrace the gearbox's planetary gears, allowing them to transform low incoming speed to high outgoing speed.

Blade Bearing

Adjusts the angle of the blades by rotating a bearing at the root of each blade.
The blade bearing enables control of the power and slows the rotor. Made of bearing steel.

Yaw Ring

The yaw system of wind turbines is the component responsible for the orientation of the wind turbine rotor towards the wind. This is a mechanism that rotates the nacelle to face the changing wind direction. Made of alloy or bearing steel.

Tower Flange

The vast majority of commercial wind turbines use tubular steel towers. Tower heights depend on rotor diameter and wind speed conditions of the site. Their heights range from 50 meters for a 1 MW turbine to as high as 125 meters and more for very large turbines. The flange comprises a large scale of rolled steel which connects the tower's conical links.

New Product Announcement

COMBICHAM

The drills feature a pilot SUMOCHAM drilling head and standard SOGT square precision ground inserts with a wiper in various sizes, made from IC808 SUMO TEC PVD coated grade.

This truly effective drill enables high feed drilling, providing high drilling rates, high accuracy and excellent surface finish.

High Productivity COMBI DRILL for Windmills

New COMBICHAM drilling line provides minimum cycle time and the most cost effective solution for this operation.

Features

- New Diameters: 33.2, 36.2, 39.2 mm
- 2 effective cutting edges for high productivity
- 2 guide pads for improved stability during machining
- New drilling ratio: 7 \& $8 \times D$
- The HCP central drilling head provides a self-centering ability for premium hole accuracy. No pre-hole is needed.
- Peripheral SOMT/X wiper inserts feature 4 cutting edges and ensure premium surface quality.

New Product Announcement

MNC-7/8D

Large Diameter Indexable Drills for the Wind Turbine Industry

Designation	D	D_{2}	L	$\mathrm{~L}_{1}$	$\mathrm{~L}_{4}$	$\mathrm{~L}_{5}$	d	D_{3}	Insert ${ }^{(1)}$	Insert ${ }_{1}{ }^{(2)}$
MNC 3832-265 AB2-175-09-8D	33.20	17.50	265.0	298.8	60.0	5.57	32.00	42.00	SOGT 09T306-W HCP 175-IQ	
MNC 362-289 AB2-190-10-8D	36.20	19.00	289.0	321.3	60.0	5.57	32.00	42.00	SOGT 100408-W HCP 190-IQ	
MNC 392-289 A40-219-10-7D	39.20	21.90	289.0	346.3	68.0	5.94	40.00	50.00	SOGT 100408-W	HCP 219-IQ

- Hole tolerance: $D+0,10 /-0.05$ in average conditions. However, it can be higher or lower according to machine and tooling conditions
- Intermediate sizes are available on request
(1) Outer insert ${ }^{(2)}$ Central insert
Spare Parts

Designation	Screw	Screw 1	Key	Torx Blade	Handle Clamping Key Guide Pad	
MNC 382-265 A32-175-09-8D	SR 34-506	SR 34-508/S-HG	T-7/51	BLD TO9/M7-SW4	SW4-SD K MNC MULTI	GPS-05-18-060
MNC 362-289 AB2-190-10-8D	SR 14-571	SR 34-508/S-HG	T-7/51	BLD T10/S7	SW6-SD K MNC MULTI	GPS-05-18-060
MNC 392-289 A40-219-10-70	SR 14-571	SR 34-508/S-HG	T-7/51	BLD T10/S7	SW6-SD K MNC MULTI	GPS-05-18-060

\qquad

New Product Announcement

Mat. No.			Feed vs. Drill Diameter F			F [mm/rev]
	Cutting Speed Vc [m/min]		$33<\emptyset \mathrm{D}<35$		$36<\emptyset \mathrm{D}<43$	
	Vc min	Vc max	$\mathrm{f}_{\text {min }}$	$f_{\text {max }}$	$\mathrm{f}_{\text {min }}$	$f_{\text {max }}$
1	120	200	0.25	0.40	0.25	0.40
2						
3	130	190				
4						
5						
6	120	180	0.25	0.38	0.25	0.38
7						
8						
9						
10	100	160	0.25	0.36	0.25	0.36
11						
12	90	140	0.16	0.25	0.18	0.25
13						
14	90	140	0.16	0.25	0.18	0.25
15	150	250	0.3	0.50	0.3	0.50
16						
17						
18						
19						
20						
21	160	260	0.35	0.55	0.35	0.55
22						
23						
24						
25						
26						
27						
28						
29						
30						
31	30	60	0.15	0.20	0.15	0.22
32	20	50				
33						
34						
35						
36						
37						
38	20	50	0.14	0.2	0.14	0.2
39						
40						
41						

